SESQUITERPENE LACTONES FROM LACTUCA SATIVA

Z. F. MAHMOUD, F. F. KASSEM, N. A. ABDEL-SALAM and C. ZDERO*

Faculty of Pharmacy, University of Alexandria, Egypt; *Institute for Organic Chemistry, Technical University of Berlin, D-1000
Berlin 12, West Germany

(Revised received 20 August 1985)

Key Word Index—Lactuca sativa; Compositae; sesquiterpene lactones; guaianolides; melampolide.

Abstract—The aerial parts of *Lactuca sativa* afforded lactucin, 11β , 13-dihydrolactucin, lactupicrin, a new melampolide and 3β , 14-dihydroxy-11 β , 13-dihydrocostunolide.

From the aerial parts of wild growing Lactuca sativa L., which is cultivated as a vegetable throughout Europe, so far only triterpenes have been reported [1]. We now have studied again this species. In addition to the triterpenes (see Experimental), lactucin [2, 3], lactupicrin [3, 4] and 11β , 13-dihydrolactucin [5], two further sesquiterpene lactones were obtained (1 and 2). From the molecular ion of 1 the molecular formula C₁₅H₂₀O₄ was deduced. The IR spectrum exhibited bands typical for hydroxyl (3600), γ-lactone (1770) and conjugated aldehyde groups (2730, 2690, 1630 cm⁻¹). The structure was elucidated from the ¹H NMR spectrum (Table 1). The presence of an 11β,13dihydro derivative of a methylene lactone followed from the methyl doublet at $\delta 1.15$ and double quartet at $\delta 2.18$. The coupling of 12 Hz indicated an 11β -proton. Spin decoupling starting with the signal at $\delta 2.18$ allowed the assignment of the whole sequence as H-1 showed an allylic coupling with H-9 β . The chemical shift of H-14 required $\Delta^{1(10)}$ double bond with the E-configuration and the coupling of H-3 agreed with the presence of a 3β -hydroxy derivative. Thus the structure and the stereochemistry of the lactone was established as 1, 3β -hydroxy- 11β , 13dihydroacanthospermolide. It is closely related to an isomeric melampolide with an 8β -hydroxyl group instead of the 3β -hydroxyl which was isolated from Blainvillea species [6]. Also urospermal A [7] from Urospermum species which is in the same tribe as Lactuca, is an acanthospermolide derivative.

The structure of 2, molecular formula $C_{15}H_{22}O_3$, also followed from the ¹H NMR spectrum (Table 1). All signals could be assigned by spin decoupling. As the broadened doublet at $\delta 4.76$ was coupled both with H-6 and H-15 the relative position of the secondary hydroxyl group was settled. Similarly the fact that the threefold doublet at $\delta 2.32$ was coupled with H-1 and the lowfield double doublet at $\delta 4.30$ indicated a secondary hydroxyl group at C-3. The configuration at C-3 and C-11 followed from the couplings. Compounds 1 and 2 are closely related. As in other cases the presence of a 14-carbonyl group induces an isomerization of the 1(10)-double bond. The chemistry of this species again shows that 11β ,13-dihydro derivatives of sesquiterpene lactones are common in the tribe Cichorieae.

Table 1. ¹H NMR spectral data of 1 and 2 (400 MHz, CDCl₃, δ-values)

н	1	2
1	6.54 ddd	4.99 br dd
2	2.55 ddd	2.47 m
2'	2.49 ddd	2.32 ddd
3	4.24 dd	4.30 dd
5	4.99 br d	4.76 br d
6	4.67 dd	4.59 dd
7	1.27 dddd	1.67 m
8α	1.44 dddd	1.69 m
8β	2.71 dddd	1.89 m
9α 9β	2.38 br dd 2.04 dddd	2.82 m
11 <i>B</i>	2.18 dq	2.26 dq
13	1.15 d	1.26 d
14	9.43 br s	$\begin{cases} 4.26 d \\ 3.82 d \end{cases}$
15	1.90 br s	1.63 d

J(Hz): compound 1: 1,2 = 10; 1,2' = 8; 1,9 β = 1.5; 2 α ,2 β = 12; 2 α ,3 = 11; 2 β ,3 = 3; 5,6 = 6,7 = 10; 7,8 β = 3; 7,8 α = 12; 7,11 = 12; 8,9 = 6.5; 8,8' = 13;8 β ,9 β = 12;8 α ,9 β = 12;9,9' = 15. Compound 2: 1,2 = 4; 1,2' = 12; 2,2' = 12; 2,3 = 6; 2,3 = 10; 5,6 = 10; 6,7 = 9; 7,11 = 12; 11,13 = 7.

EXPERIMENTAL

Fresh, wild growing aerial parts (3 kg) collected near Alexandria, Egypt, were extracted with Et₂O-petrol (1:2) and the resulting extract was first separated by CC (SiO₂) using petrol, CHCl₃ and CHCl₃-MeOH (20:1). The nonpolar fractions gave 400 mg lupeyl acetate, 600 mg lupeol, 50 mg sitosterol while the polar fractions (CHCl₃-MeOH) gave 15 mg sitosterol glucoside, 3 mg lactucin, 5 mg lactupicrin, 75 mg 1 and a mixture which by HPLC (Rp8, MeOH-H₂O, 1:1) gave 4 mg 11 β ,13-dihydrolactucin, R_t 2.4 min) and 16 mg 2 (R_t 3.4 min). Known compounds were identified by comparison with authentic materials (mp, mmp, co-TLC and 1 H NMR).

3β-Hydroxy-11β,13-dihydroacanthospermolide (1). Colourless crystals, mp 197°; UV $\lambda_{\rm meo}^{\rm meoH}$ 230 nm; IR $\nu_{\rm mac}^{\rm cHCl_3}$ cm $^{-1}$: 3600 (OH), 2730, 1690, 1630 (C=CCHO), 1770 (γ-lactone); MS m/z (rel. int.): 264.136 [M]⁺ (10) [C₁₅H₂₀O₄]⁺, 246 [M - H₂O]⁺ (8), 235 [M - CHO]⁺ (4.5), 218 [246 - CO]⁺ (20), 109 (100):

$$[\alpha]_{24^{\circ}}^{\lambda} = \frac{589 \quad 578 \quad 546 \quad 436 \text{ nm}}{-87 \quad -93 \quad -112 \quad -207} \text{ (CHCl}_3; c \ 0.6).$$

 3β -14-Dihydroxy-11 β ,13-dihydrocostunolide (2). Colourless

crystals, mp 110°; IR $v_{\text{max}}^{\text{CHCl}_3}$ cm⁻¹: 3600 (OH), 1765 (γ -lactone); MS m/z (rel. int.): 266.152 [M]⁺ (14) (calc. for $C_{15}H_{22}O_4$: 266.150), 248 [M - H_2O]⁺ (32), 207 [M - C_7H_5O]⁺ (100), 179 [207 - CO]⁺ (28); [α]_D^{24°} = +110 (MeOH; c 0.1).

REFERENCES

- 1. Knights, B. A. and Middleditah, B. S. (1972) Phytochemistry 11, 1177.
- Dolejs, L., Soucek, M., Horak, M., Herout, V. and Sorm, F. (1958) Coll. Czech. Chem. Commun. 23, 2195.
- Schenck, G., Graf, H. and Schreber, W. (1939) Arch. Pharm. Deutsch. 277, 137.
- 4. Holzer, K. and Zinke, A. (1953) Monatsh. Chem. 84, 901.
- Sarg, T. M., Omar, A. A., Khafagy, S. M., Grenz, M. and Bohlmann, F. (1982) Phytochemistry 21, 1163.
- Singh, P., Sharma, A. K., Joshi, K. C., Jakupovic, J. and Bohlmann, F. (1985) Phytochemistry 24, 2023.
- 7. Bentley, R. K. T., Buchanan, G. Y. C., Halsall, T. G. and Thaller, V. (1970) Chem. Commun. 435.

Phytochemistry, Vol. 25, No. 3, pp. 748-750, 1986. Printed in Great Britain.

0031-9422/86 \$3.00+0.00 © 1986 Pergamon Press Ltd.

HELIANGOLIDES AND ACYCLIC DITERPENE FROM VIGUIERA GILLIESII

EDUARDO GUERREIRO

Departamento de Química Orgánica, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco y Pedernera, 5700 San Luis, Argentina

(Revised received 16 July 1985)

Key Word Index—Viguiera gilliesii; Compositae; aerial parts; heliangolides; acyclic diterpene; structural determination.

Abstract—The aerial parts of *Viguiera gilliesii* afforded five heliangolides and one new acyclic diterpene, (E, Z, Z)-3,7,11-trihydroxymethyl-15-methyl-2,6,10,14-hexadecatetraen-1-ol. Structures were elucidated by spectroscopic methods and by comparison of the data with those of closely related compounds.

INTRODUCTION

As part of a general phytochemical investigation of the native vegetation of the Cuyo Region (Argentina), we have studied *Viguiera gilliesii* Hook et Arn collected in Villavicencio (Mendoza). Reports on about 25 *Viguiera* species have appeared so far. Furanoheliangolides and heliangolides as well as diterpenes are characteristic constituents but germacradienolides have also been found.

RESULTS AND DISCUSSION

The aerial parts of V. gilliesii afforded a complex mixture of sesquiterpene lactones (1a, b, 2a, b and 3) which could be separated only with difficulty, as well as the acyclic diterpene 4a.

The major lactone, 2a, colourless oil, $[\alpha]_D - 77.9$ showed a molecular ion at m/z 366, which agreed with formula $C_{20}H_{30}O_6$. Its IR spectrum suggested the presence of an α -methylene- γ -lactone, hydroxyl groups and